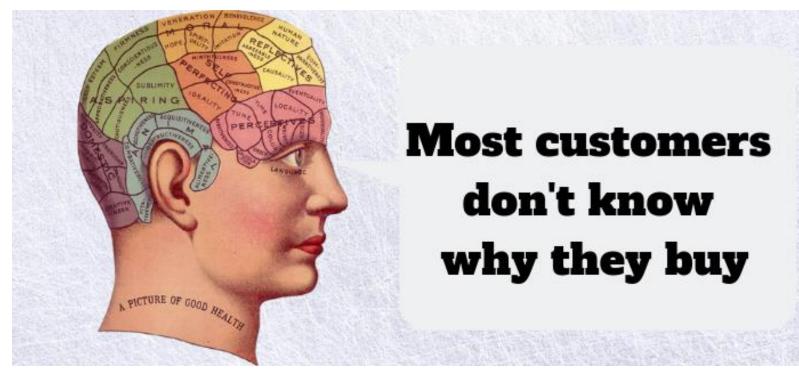


Application of EEG signals in neuromarketing

Introduction and case studies

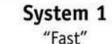
Salameh Sadat Hosseini (MSc. student of Information Technology Engineering - E-commerce)

salame.hoseini@gmail.com


Wednesday, 08 September, 2021; 19-21:00.

- Introduction to neuromarketing and EEG signals
- Examples of neuromarketing studies
- Applications, Challenges and Promises

Introduction to neuromarketing



Daniel Kahneman's System 1 vs. System 2

Daniel Kahneman's posit regarding thinking

Figure 1: A Comparison of System 1 and System 2 Thinking

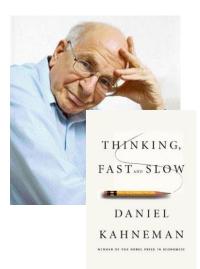
DEFINING CHARACTERISTICS Unconscious Effortless Automatic

WITHOUT self-awareness or control

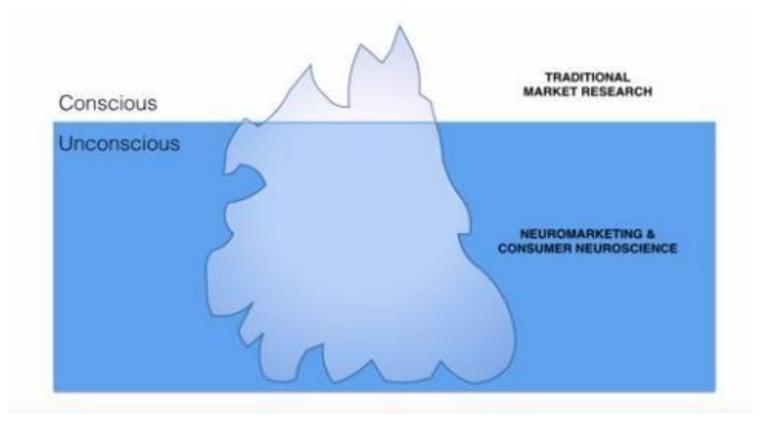
"What you see is all there is."

ROLE Assesses the situation Delivers updates

System 2


"Slow"

DEFINING CHARACTERISTICS Deliberate and conscious Effortful Controlled mental process


WITH self-awareness or control

Logical and skeptical

ROLE Seeks new/missing information Makes decisions

WHY neuromarketing?

Neuromarketing?

NEUROMARKETING

NEUROMARKETING

Definition of neuromarketing

Background knowledges

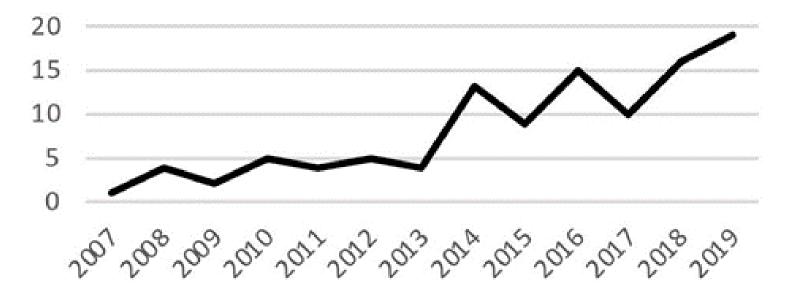
Mansor, A.A. and Mohd Isa, S. (2020). Fundamentals of neuromarketing: What is it all about? *Neuroscience Research Notes*, 3(4), pp.22–28.

Gerry Zaltman (1999) from Havard university

First marketer to usefMRI

Ale Schmidt (2002) from Erasmus university

First to name neuromarketing


Neuromarketing

Commercial application of neuroscience technologies and insights to drive business

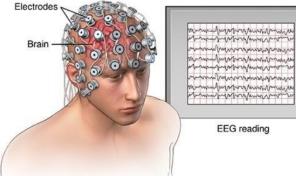
Consumer neuroscience

Academic use of neuroscience to better understand marketing effects on consumer behavior

A. NUMBER OF PUBLICATIONS

Bazzani, A., Ravaioli, S., Trieste, L., Faraguna, U. and Turchetti, G. (2020). Is EEG Suitable for Marketing Research? A Systematic Review. *Frontiers in Neuroscience*, 14.

Why was neuromarketing sky-rocketed?

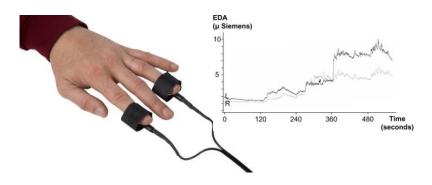

Neuromarketing strategies by the successful brands

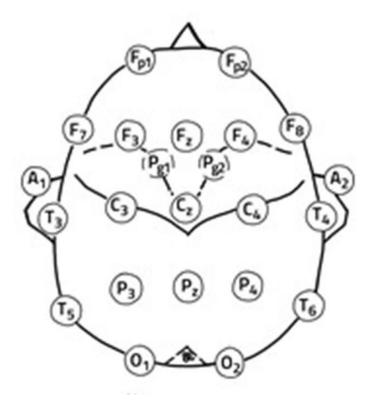
Company	Industry	Purpose of Neuromarketing		
GMTV	Television	Conduct a study to teach advertisers how viewer's brains act during		
		morning hours.		
VIACOM	Media	Study reactions to advertising.		
HAKUHODO	Advertising	Observe responses to products, brands, advertising and video		
		content.		
PHD	Media Planning	Measure the relative effectiveness of advertising.		
Martin Lindstrom (Neurosense)	Author	Neurosense designed and analyzed all the fMRI studies used for		
		Lindstrom's book research.		
Yahoo	Media	Study consumer's reaction to a television commercial.		
Hyundai	Automotive	Study consumer's reaction when viewing a sport's car.		
Microsoft	Technology\software	Understanding consumer's interaction with computers including		
		their feelings of surprise, satisfaction and frustration.		
Ebay	Online auctions	Adopted ad campaign on the basis of neuromarketing research.		
Frito-Lay	Food	Adjusted commercials, products and packaging on the basis of		
		neuromarketing based research.		
Neurofocus (Conducted neuromarketing research for among				
others Google, Chevron and Walt	Neuromarketing research	Consulting based neuromarketing research		
Disney company)				
The weather channel	Television	Study viewers reactions to promotions		
Daimler Automotive	Automotive	Study consumers reaction to car headlight characteristics		
Pepsico	Food	idea for single-serve packaging and corresponding ad campaign		
Porsche	Automotive	Consumer response to advertisement		
Facebook	Social Networking	frequently a page should post, how to plan out an ad campaign		
Coca Cola	Food	Effective advertisement of product		
PayPal	Money transfer	Advertisement emphasising speed and convenience		
Volvo	Automotive	Study related to car designing.		
Microsoft	Software	Eye tracking and EEG measures to analyse the brain's response to t		
		various content, aesthetics and web design combinations		
Budweiser	Food	Study positive emotional response in advertisement		

Solomon, P.R. (2018). Neuromarketing: Applications, Challenges and Promises. Biomedical Journal of Scientific & Technical Research, 12(2).

Methods

Electroencephalography (EEG)


Functional magnetic resonance imaging (fMRI)


Eye tracking

Neurometric measure: EEG

Strength

- The only portable brain scanner
- Preferable brain scanning technique
- · Affordable and easy to use
- Goodat relating marketing stimuli to subsequent changes

Seizure Left brain hald a state the set of the second and the second a Right brain and the second and the second s An electroencephalogram (EEG)

- Weaknesses
 - · Captures activity underneath the skull
 - Low spatial resolution
 - · Time consuming to connect participants
 - · Timely calibration procedure

Is EEG Suitable for Marketing Research?

High temporal resolution Portable and combinable with other tools for naturalistic settings (in-store) Minimally-invasive Affordable

CONSUMER GRADE EEG PRODUCTS

Product	Sensor	Channel	Sampling rate	Wireless connection	Raw data access	Battery Life [Hours]	Price [USD]	Released Year
NeuroSky MindSet* [12]	Dry	1	512	Bluetooth	Yes	-	-	2007
Neural Impulse Actuator*	Dry	-	-	-	No	-	-	2008
Emotiv EPOC* [13]	Wet	14	128	Bluetooth	Yes	-	-	2009
Mindflex** [14]	Dry	1	512	No	No	***	99	2009
MindWave* [12]	Dry	1	512	Bluetooth	Yes	-	-	2011
XWave headset [15]	Dry	1	512	No	No	* * *	-	2011
Necomimi** [16]	Dry	1	512	No	No	***	69	2012
Emotiv EPOC+ [13]	Wet	14	128/256	BLE	Yes	12	799	2013
Melon HeadBand* [17]	Dry	3	-	Bluetooth	-	-	-	2014
MyndPlay Myndband [18]	Dry	1	512	BLE	Yes	10	299	2014
Muse [19]	Dry	4	220/500	BLE	Yes	5	199	2014
OpenBCI [20]	Dry/Wet	8/16	250	BLE and Wifi****	Yes	26	750/1800	2014
Aurora DreamBand [21]	Dry	1	-	BLE	Yes	-	299	2015
Emotiv INSIGHT [13]	Semi-dry	5	128	BLE	Yes	8	299	2015
Muse 2 [19]	Dry	4	256	BLE	Yes	5	249	2016
FocusBand [22]	Dry	2	128	BLE	No	12	600	2016
SenzeBand [23]	Dry	4	250	BLE	Yes	4	299	2016
MindWave Mobile 2 [12]	Dry	1	512	BLE	Yes	8	199	2018

Sawangjai, P., Hompoonsup, S., Leelaarporn, P., Kongwudhikunakorn, S. and Wilaiprasitporn, T. (2020). Consumer Grade EEG Measuring Sensors as Research Tools: A Review. IEEE Sensors Journal, 20(8), pp.3996–4024.

Examples of neuromarketing studies

- Yadava et al
- P. Golnar-Nik, et al.

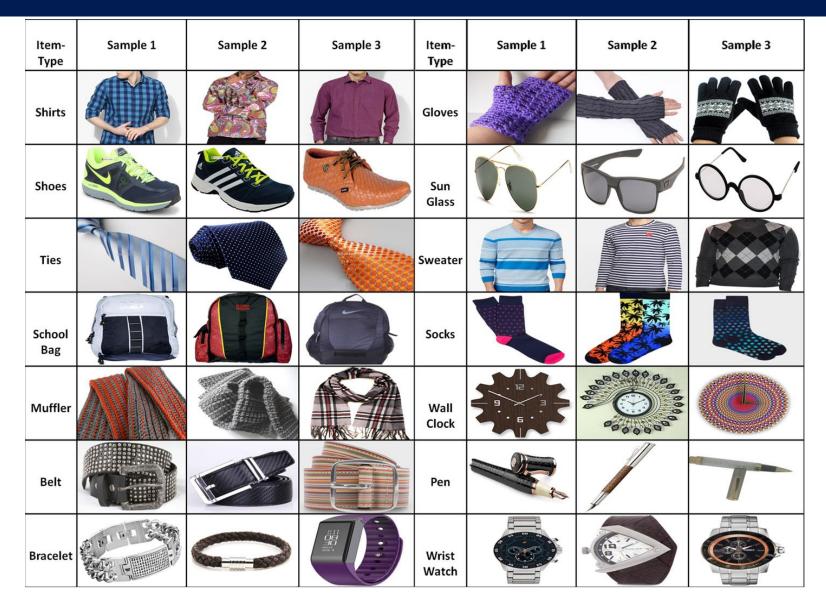
Multimed Tools Appl DOI 10.1007/s11042-017-4580-6

Analysis of EEG signals and its application to neuromarketing

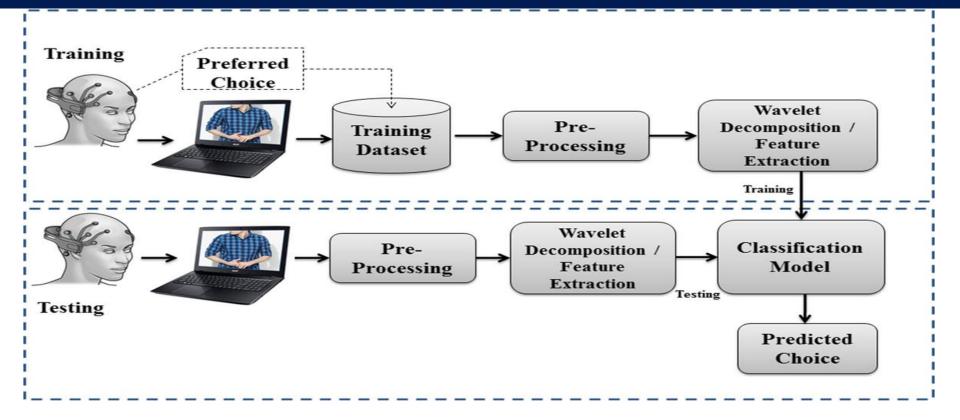
Mahendra Yadava¹ • Pradeep Kumar¹ • Rajkumar Saini¹ • Partha Pratim Roy¹ • Debi Prosad Dogra²

Experimental procedure:

- Liking/Disliking products
- 25 participants participants (25 males and 15 females, age: 18-38)

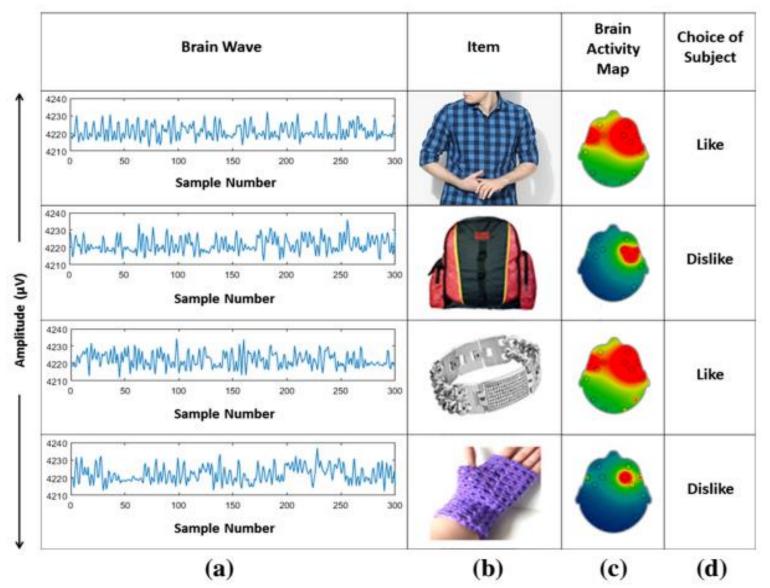

EEG data acquisition and preprocessing:

- Emotiv EPOC+ device has been used for capturing the EEG signals
- Each image was displayed for 4 seconds
- International 10 20 system

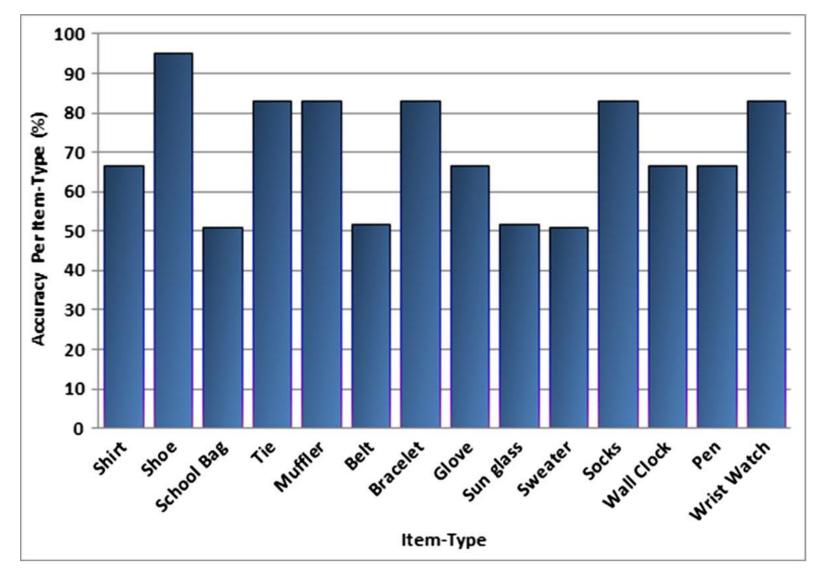

User watching consumer products

Items

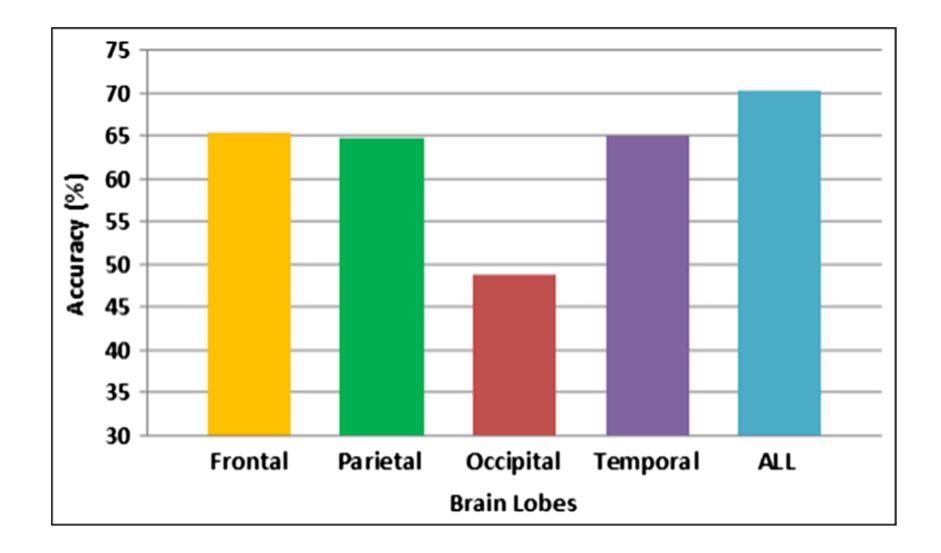
Prediction model


preprocessing: Savitzky-Golay (S-Golay) filter

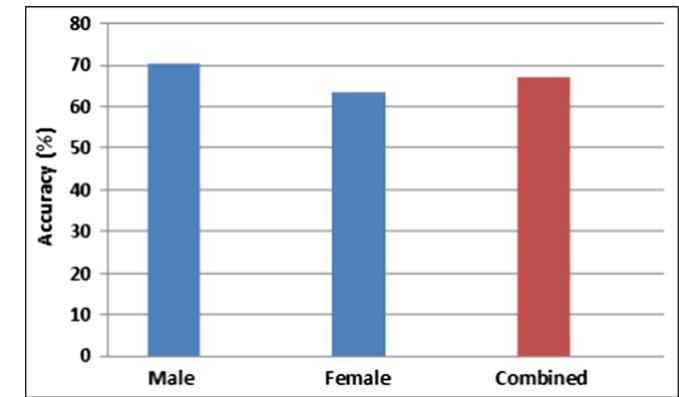
Feature extraction: Discrete Wavelet Transform (DWT)

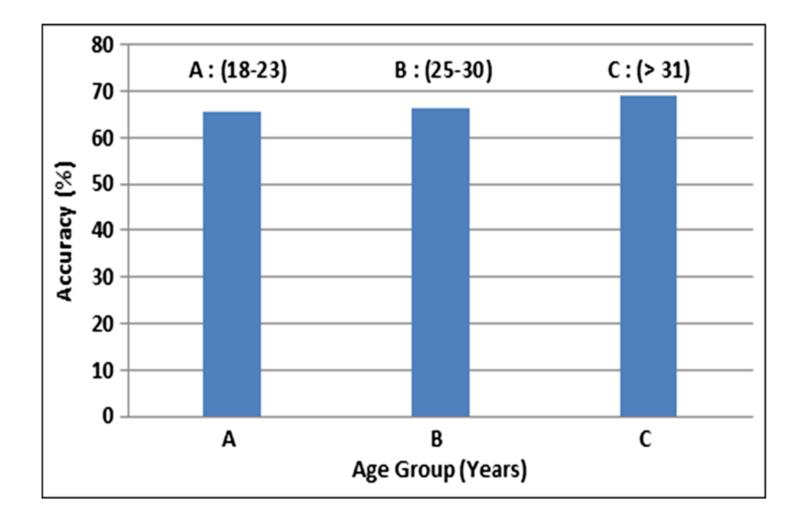

Classification: Hidden Markov Model (HMM)

evaluated the performance of the proposed framework : using popular classifiers, such as, Support Vector Machine (SVM), Random Forest (RF) and Artificial Neural Network (ANN).

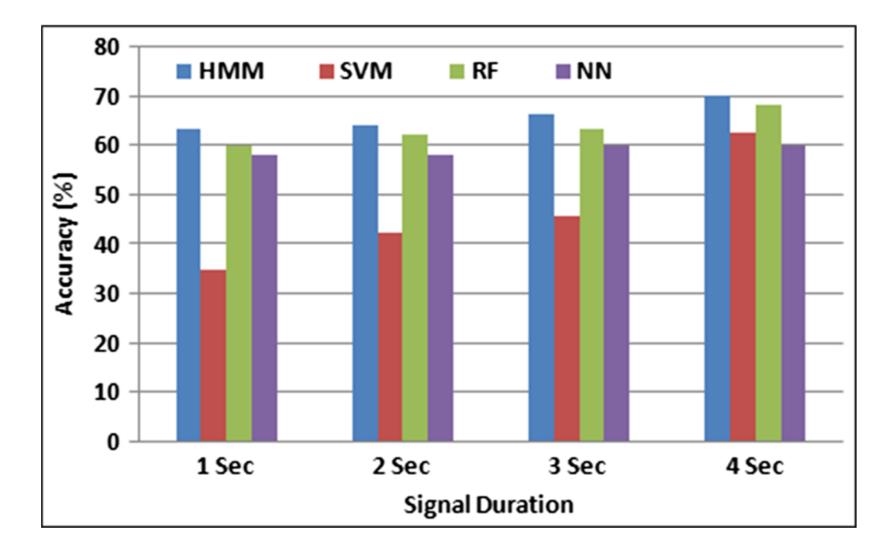

Result

Item Type


Brain Lobes


Gender Group

Description of aging groups for the analysis of choice prediction


Age-Group	Year	Male	Female	Total
А	18-23	10	6	16
В	25-30	8	5	13
С	>31	7	4	11

Age-Group

Signal Duration

P. Golnar-Nik, et al.

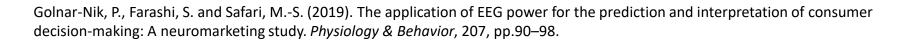
Physiology & Behavior 207 (2019) 90-98

Contents lists available at ScienceDirect

Physiology & Behavior

journal homepage: www.elsevier.com/locate/physbeh

The application of EEG power for the prediction and interpretation of consumer decision-making: A neuromarketing study

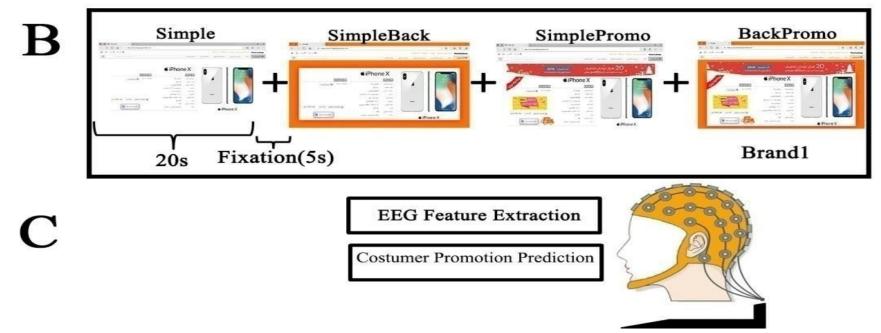

Parnaz Golnar-Nik^a, Sajjad Farashi^{b,c}, Mir-Shahram Safari^{a,d,*}

^a Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran 19615-1178, Iran

^b Deputy of Research and Technology, Hamadan University of Medical Sciences, Hamadan, Iran

^c Autism Spectrum Disorder Research Center, Hamadan University of Medical Sciences, Hamadan, Iran

^d Brain Future Institute, Tehran, Iran


Physiology

- 1. The potential of EEG spectral power for prediction of consumers' preferences
- Interpretation of the alteration of consumers' decision-making in shopping behavior when the content of an advertisement including background color and promotions was changed.

Golnar-Nik, P., Farashi, S. and Safari, M.-S. (2019). The application of EEG power for the prediction and interpretation of consumer decision-making: A neuromarketing study. *Physiology & Behavior*, 207, pp.90–98.

Experimental design

Golnar-Nik, P., Farashi, S. and Safari, M.-S. (2019). The application of EEG power for the prediction and interpretation of consumer decision-making: A neuromarketing study. *Physiology & Behavior*, 207, pp.90–98.

methods

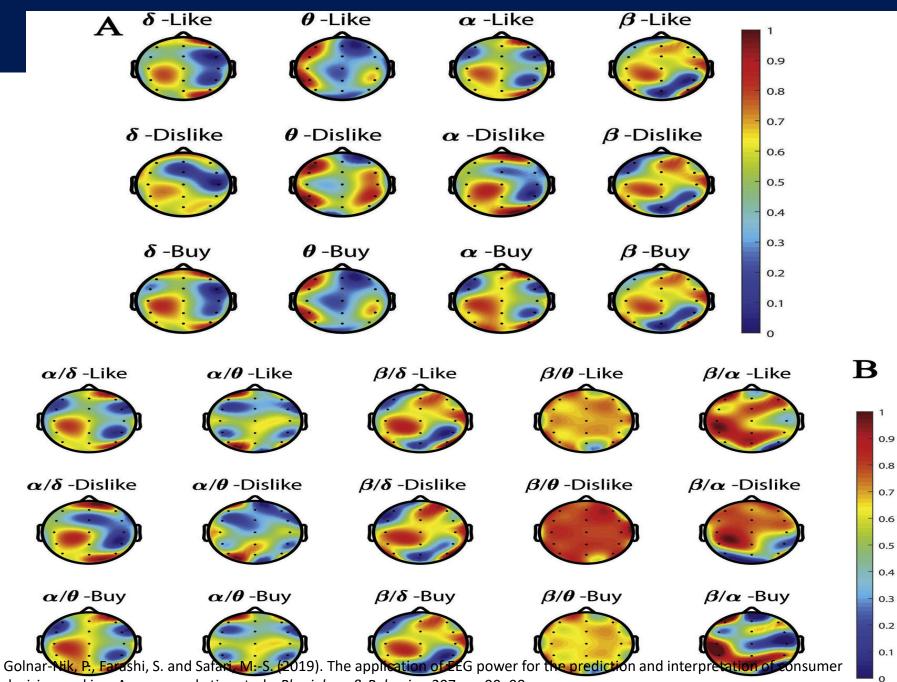
Experimental procedure:

- Liking/Disliking or Buying the mobile phones advertising
- 16 healthy Caucasian participants (9 males and 7 females, age: 23 ± 3 years)

EEG data acquisition

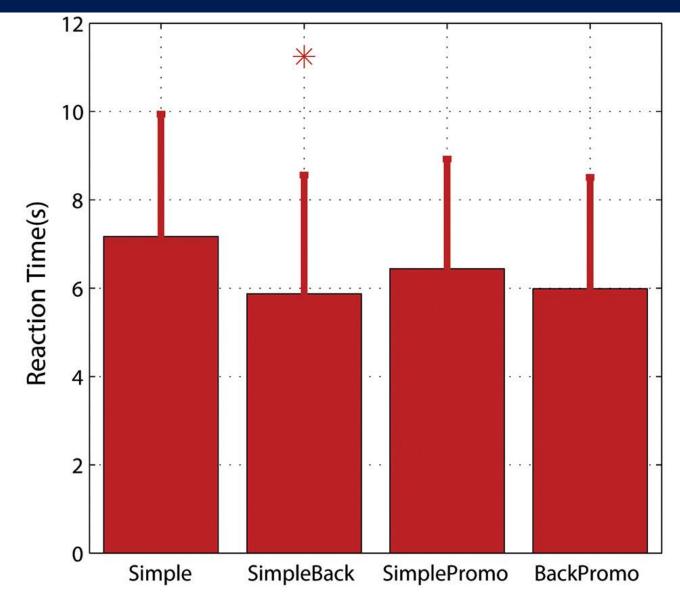
preprocessing:

independent component analysis (ICA)

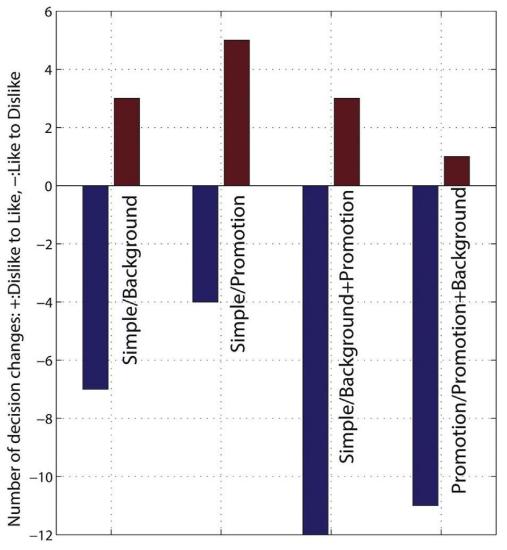

Classifiers:

• SVM and LDA

Statistical analysis:


• ANOVA analysis

Golnar-Nik, P., Farashi, S. and Safari, M.-S. (2019). The application of EEG power for the prediction and interpretation of consumer decision-making: A neuromarketing study. *Physiology & Behavior*, 207, pp.90–98.


decision-making: A neuromarketing study. *Physiology & Behavior*, 207, pp.90–98.

Average reaction time for making a decision

Golnar-Nik, P., Farashi, S. and Safari, M.-S. (2019). The application of EEG power for the prediction and interpretation of consumer decision-making: A neuromarketing study. *Physiology & Behavior*, 207, pp.90–98.

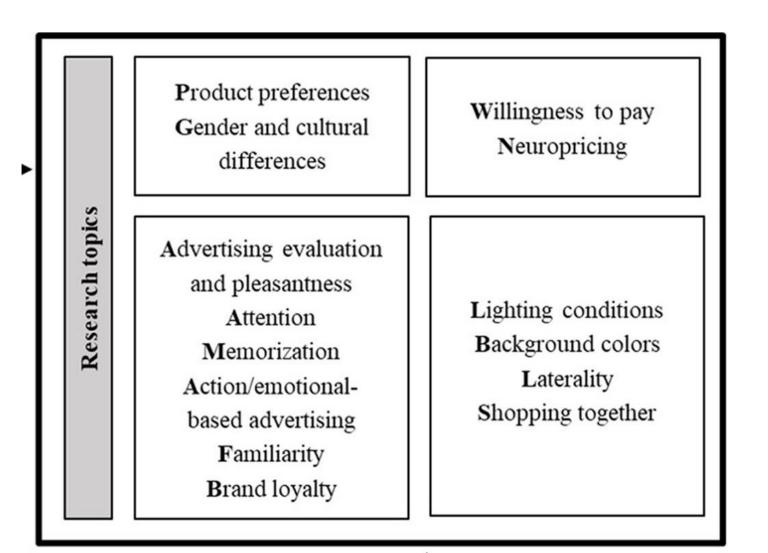
The effect of adding background and promotion

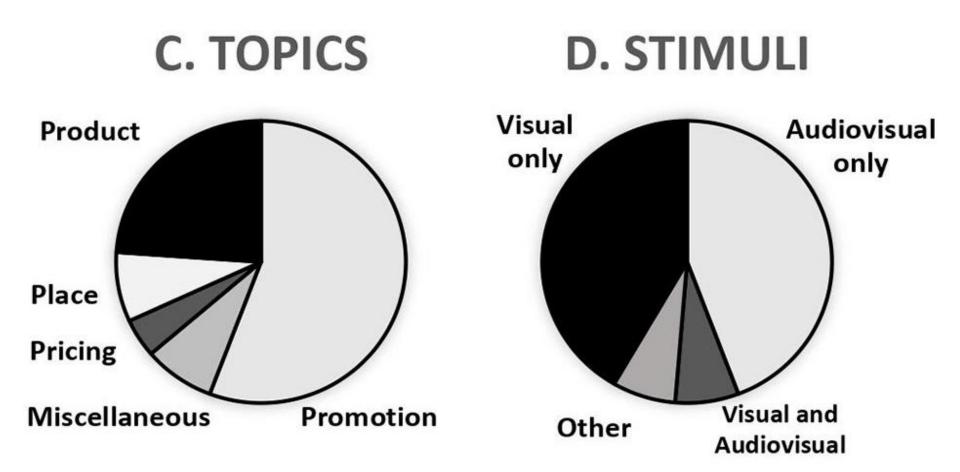
Decision change by adding new content to advertisement

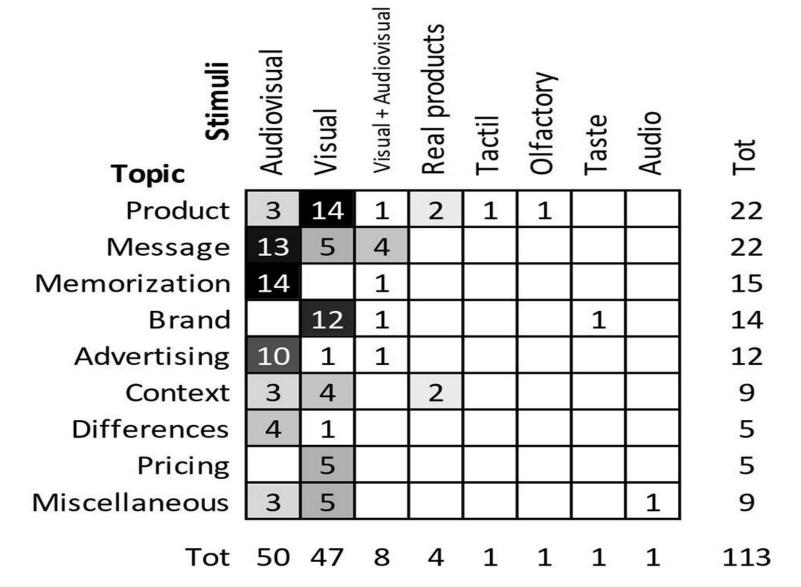
Golnar-Nik, P., Farashi, S. and Safari, M.-S. (2019). The application of EEG power for the prediction and interpretation of consumer decision-making: A neuromarketing study. *Physiology & Behavior*, 207, pp.90–98.

Results

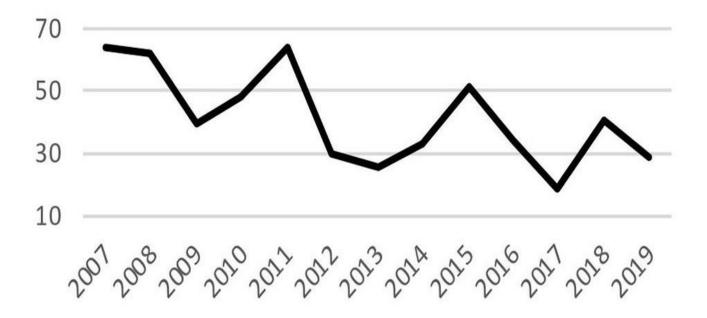
- showed that the extracted features from EEG power could predict consumer's decision-making incidence with relatively high accuracy (> 87%)
- distinguished between "Like" and "Dislike" preferences with accuracy higher than 63%.
- Also, the most discriminative channels for predicting the incidence of decision-making about liking/disliking or buying a product were found to be frontal and Centro-parietal locations
- the difference between "Like" and "Dislike" decisions was observed mostly in the frontal electrodes.
- the results showed that adding the background color to the designed advertisement had a negative impact on the degree of liking a product.


Golnar-Nik, P., Farashi, S. and Safari, M.-S. (2019). The application of EEG power for the prediction and interpretation of consumer decision-making: A neuromarketing study. *Physiology & Behavior*, 207, pp.90–98.

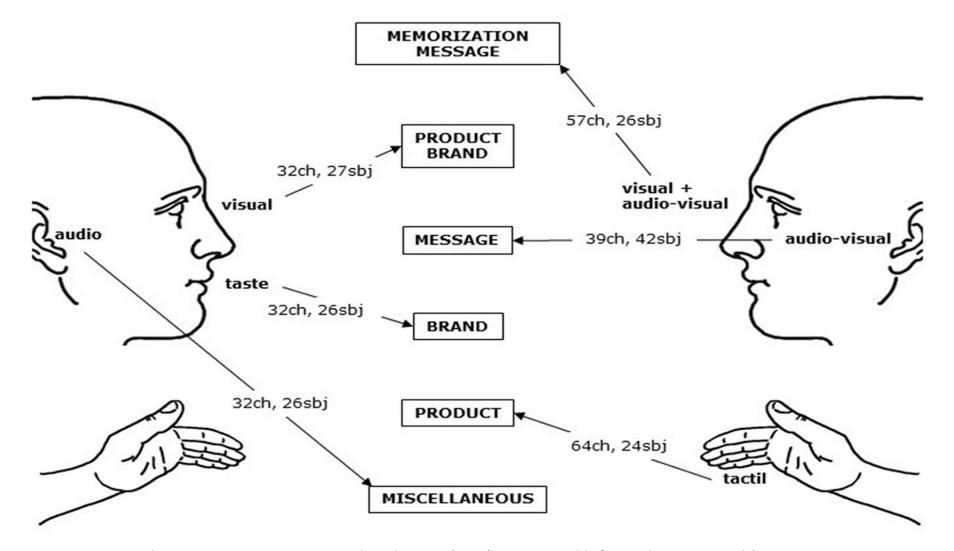

Applications, Challenges and Promises


- querying five databases for the titles of articles published up to June 2020 with the terms [EEG] AND [neuromarketing] OR [consumer neuroscience].
- We screened 264 abstracts and analyzed 113 articles, classified based on research topics and the characteristics of the experimental paradigm, including study design and the type of stimuli used

Research Topics



Bazzani, A., Ravaioli, S., Trieste, L., Faraguna, U. and Turchetti, G. (2020). Is EEG Suitable for Marketing Research? A Systematic Review. *Frontiers in Neuroscience*, 14.


Bazzani, A., Ravaioli, S., Trieste, L., Faraguna, U. and Turchetti, G. (2020). Is EEG Suitable for Marketing Research? A Systematic Review. *Frontiers in Neuroscience*, 14.

Bazzani, A., Ravaioli, S., Trieste, L., Faraguna, U. and Turchetti, G. (2020). Is EEG Suitable for Marketing Research? A Systematic Review. *Frontiers in Neuroscience*, 14.

Average number of participants and EEG channels

Bazzani, A., Ravaioli, S., Trieste, L., Faraguna, U. and Turchetti, G. (2020). Is EEG Suitable for Marketing Research? A Systematic Review. *Frontiers in Neuroscience*, 14.

Brain states	Functionalities in Neuromarketing	
 Theta (4–8 Hz)	Frontal theta associated with cognitive process [59]. Theta amplitude increase for preferred color [18].	
Alpha (8–12 Hz)	Frontal alpha associated with cognitive process [59]. Alpha amplitude is inversely correlated with neural activity used in frontal asymmetry score [21]. Emotional valance corresponds alpha asymmetry, high alpha activity in central–parietal–occipital lobe vigilance [27].	
Beta (12–30 Hz)	Medial–frontal beta band activity is associated with reward processing [57]. Right parietal beta corresponds to imagination [59].	

Rawnaque, F.S., Rahman, K.M., Anwar, S.F., Vaidyanathan, R., Chau, T., Sarker, F. and Mamun, K.A.A. (2020). Technological advancements and opportunities in Neuromarketing: a systematic review. *Brain Informatics*, 7(1).

Algorithms

Classifiers	Neuromarketing studies	Average accuracy
Support Vector Machine (SVM)	Like/dislike classification for esthetic preference recognition among 3D objects (Chew et al.) [17]	68%
	Attention bias identification between targeted and non-targeted stimuli using NeoCube- based SNN architecture (Doborjeh et al.) [64]	48.5%
	Like/dislike classification among e-commerce product (Yadava et al.) [18]	62.85%
	Emotional valence recognition between excitement and boredom using EEG device and combining SVM, KNN, SVR, LR (Ogino and Mitsukura) [68]	72.4%
	Purchase decision prediction from fMRI data using recursive cluster elimination-based support vector machine (RCE-SVM) (Wang et al.) [30]	55.70%
	Facial emotion recognition using GSR sensor biometric data (Goyal and Singh) [54]	81.65%
	Seven-emotion recognition using EEG signal (Bhardwaj et al.). Happiness and sadness clas- sification accuracy reported here, respectively	87.5%, 92.5%
	Color classification using EEG signal (Rakshit et al.)	78.81%
K-Nearest Neighbor (KNN)	Like/dislike classification for esthetic preference recognition among 3D objects (Chew et al.) [17]	64%
Hidden Markov model (HMM)	Like/dislike classification among e-commerce product (Yadava et al.) [18]. Classification accu- racy reported for male and female subject, respectively	70.33%, 63.56%
Linear discriminant analysis (LDA) Seven-emotion recognition using EEG signal (Bhardwaj et al.) [58]. Happiness and sadness clas- sification accuracy reported here, respectively	82.5, 87.5%
	Like-/dislike classification using car stimuli and ERP signal (Wreissenger et al.)	61%
Naïve Bayes	Purchase decision prediction using Neural Impulse Actuator (NIA) device (Taqwa et al.) [73]	48.5%
Artificial Neural Network	Consumer gender prediction using facial action coding (Gurbuj and Toga) [28]	83.8%
	TV advertisement liking recognition using EEG signal (Soria Morillo et al.) [43]	80%
	TV advertisement liking recognition using EEG (Soria Morillo et al.) [40]	80%
	Like/dislike classification among e-commerce products (Yadava et al.) [18]	60%

Rawnaque, F.S., Rahman, K.M., Anwar, S.F., Vaidyanathan, R., Chau, T., Sarker, F. and Mamun, K.A.A. (2020). Technological advancements and opportunities in Nourcementian advancements and opportunities 7(1).

- More complex multisensory stimuli and immersive experiences
- Physical characteristics of the store and social interactions
- Market segmentations
- Use experience
- Analyze fake answer
- Neutral choice for the products
- Combine other modalities with eeg

Ethical Issue of Neuromarketing

- Control on consumer psychology
- Manipulation of buyer's brand preference
- Disruption of Privacy of thoughts
- Lack of Regulation
- Promoting Consumerism

7 useful scientific journals for neuromarketing research

- •Frontiers in Neuroscience.
- •PLOS ONE.
- •Journal of Consumer Research.
- •Journal of Experimental Psychology: General.
- •Journal of Marketing Research.
- •Journal of Consumer Psychology.
- •Journal of Advertising Research.

THANK YOU

For more information, Email to salame.hoseini@gmail.com