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The knowledge pyramid




Data Fusion: Definition and Concept

* Human and animals use combination of multiple
senses.

* “The analysis of several datasets, such that different
datasets can interact and inform each other”

* “A process that combines data and knowledge from
different sources with the aim of maximizing the useful
information content, for improved reliability or
discriminant capability, while minimizing the quantity
of data ultimately retained.”

* The analysis of >2 brain imaging modalities collectively

DOI: 10.1109/JPROC.2015.2460697



llustration of the human data

fusion system (decision)
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(Con)fusion of terminology

Sensor

Management

Processing . Resource Management

Management - Control

Planning Sensor Fusion

Correlation Estimation
Information Fusion

Tracking Data Mining

Data Fusion



Benefits in the use of multiple sensor

* a reduction in measurement time

* a downtime reduction and an increase in reliability
* redundant and complementary information

* a higher signal-to-noise ratio

* a reduction in measured uncertainty

* a more complete picture of the environment



Probability of error versus number of sensors

Probability
of error

Number of sensors



Common types of errors

Errors
Ambiguous Incomplete Incorrect Measurement Random Systematic Reasoning
Inspection Human Equipment False False Calibration Precision Accuracy Inductive Deductive
practicality error malfunction negative positive error error error

(environment)

Incorrect Unreliable No
output output
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Data fusion applications

* Maintenance engineering
* Robotics

* Pattern recognition and radar tracking
* Mine detection

* Military applications

* Remote sensing
 Traffic control

* Aerospace systems

* Law enforcement

* Medicine

* Finance

* Metrology

* Geo-science



Multi-sensor data fusion system

* Complementary: The sensors do not directly dep
end on each other, but can be combined in order t
o give a more complete image of the phenomenon
under observation.

* Help to resolve the problem of incompleteness

viewing different regions

13



Multi-sensor data fusion system

* Competitive. Each sensor delivers an independent
measurement of the same property.

 Reduce the effects of uncertain and erroneous
measurements

viewing the same area



Multi-sensor data fusion system

* Cooperative It uses the information provided by
two, or more, independent sensors to derive inform
ation that would not be available
from the single sensors.
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Three approaches to multi-modal neuroimaging
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Three approaches to multi-modal neuroimaging

* Visual inspection
Uni-modal analysis results are visualized separately

This is the least informative, but is used quite extensively, and
can highlight the different results that are provided by each
modality in a qualitative manner.

* Data integration

data obtained with each uni-modal technique are analyzed
individually and then overlaid, which prevents any interaction
between different types of data

For example, a data integration approach would not detect a
change in gray matter concentration between patients and
controls that is related to fMRI activation maps

DOI: 10.1177/1550059418782093



Three approaches to multi-modal neuroimaging

* Data Fusion
v'one-sided (asymmetric data fusion)

one modality constrains another modality
v/ symmetric data fusion

all modalities are analyzed jointly

Doi: 10.1177/1550059418782093



Data Fusion

Concurrent analysis of modalities One modality constrains another modality
Approaches Symmetric Asymmetric
. . EEG informed J_ DTl-informed
Jlodel Diiven Rata I?mren fMRI analysis sMRI analysis
Decomposition
GLM methods
General Linear Model
DCM(SSM) Blind Semi-Blind
Dynamic Casual Modeling
State Space Models Parallel ICA
SEM N-PLS

CC-ICA

Coefficient-constrained ICA

Structural equation modeling Multimodal Partial Least Square

mCCA mCCA
Multimodal Canonical Correlation Multimodal Canonical Correlation
Analysis Analysis

JICA LLDA
Joint ICA Local Linear Discriminant Analysis
IVA and ICA

Informed multimodal
PLS

Supervised [ ]
mCCA + ICA SVM S Sursod R
Multiset CCA + Joint ICA Support Vector Machine pe

3D fMRI contrast image 4D fMRI contrast image

DOI: 10.1016/j.bpsc.2015.12.005 9




Blind Multivariate Fusion Methods
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Semi-Blind Multivariate Fusion Methods
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" frontiers TECHNOLOGY REPORT
- . : published: 24 August 2018
1N Neuroinformatics doi: 10.3389/fninf.2018.00056

Chack for

updates

Neuroscience Information Toolbox:

An Open Source Toolbox for
EEG-fMRI Multimodal Fusion

Analysis

Li Dong'?*, Cheng Luo'2*, Xiaobo Liu'2, Sisi Jiang'?, Fali Li"?, Hongshuo Feng?,
Jianfu Li'2, Diankun Gong'? and Dezhong Yao'?*
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Brain networks extracted from EEG and fMRI
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Advantages and Limitations of Neuroimaging Techniques

* fMRI measures the hemodynamic response related
to neural activity in the brain dynamically

 sMRI provides information about the tissue type of
the brain [gray matter (GM), white matter (WM),
cerebrospinal fluid (CSF)

* DTI can additionally provide information on
structural connectivity among brain networks.

 EEG measures brain electrical activity



DOI: 10.1177/1550059418782093

Advantages and Limitations of Neuroimaging Techniques

Temporal Spatial
Methods Measurement Provided Resolution  Resolution Advantages Limitations
CT Brain structures Minutes 0.5-1 mm High spatial resolution Radiation
Low contrast
Low temporal resolution
MRI Brain structures Minutes to  |-2 mm High spatial resolution Low temporal resolution
(eg, white matter, hours No radiation Relatively low sensitivity
gray matter, and High cost
cerebrospinal fluid) Long scanning time
DTI Fiber tracks Minutes 2.5 mm High spatial resolution Limited information for GM
EEG Brain activity Milliseconds >10 mm High temporal resolution Low spatial resolution
No radiation Does not measure activity below the
Low cost cortex
Portable
Widely available
Fewer motion artefacts
MEG Brain magnetic activity ~ Milliseconds  >5 mm High temporal resolution Low spatial resolution
Medium spatial resolution Not portable
Limited availability
High cost
PET Perfusion Secondsto  4-10 mm Fewer motion artifacts Low spatial and temporal resolution
Metabolism minutes High sensitivity Limited availability

Neurotransmitter
dynamics

Radiation
High cost
Not portable




DOI: 10.1177/1550059418782093

Advantages and Limitations of Neuroimaging Techniques

Temporal Spatial
Methods Measurement Provided  Resolution  Resolution Advantages Limitations
SPECT Perfusion Minutes 8-15mm High sensitivity Low spatial and temporal resolution
Metabolism Lower cost than PET Lower sensitivity than PET
Neurotransmitter Higher availability than PET
dynamics
fMRI Hemodynamic activity ~ Seconds <3mm High spatial resolution Not portable
No radiation Low temporal resolution
Widely available Sensitive to motion artefacts
T™MS? Focal brain activity Milliseconds 45-90 mm  No radiation Spatial and temporal resolution
to seconds Portable dependent on other parameters
Can stimulate lesions Has some risks (eg, seizures, damage
brain cells)
NIRS Fluctuations in cerebral  Seconds >5mm Medium temporal resolution Low spatial resolution

metabolism during
neural activity

LORETA/VARETA Brain electric/magnetic

activity

Milliseconds 5-7 mm

Low cost
Portable

High estimation accuracy of the
current density and location

Low error rate

High time resolution

VARETA imposes different amounts
of spatial smoothness

for different types of generators.

VARETA eliminate ghost solutions
and minimize the diffuse allocation
of variance

Low spatial resolution when compared
with that of an fMRI or PET scan

Need some algorithms for spatial
blurring

In LORETA, regularization parameter
is a constant




General data fusion methods

e Bayesian network (interference)

* Dempster-Shafer evidential theory
e Kalman filter

* Extended Kalman filter (EKF)

* Particle filters

* Fuzzy logic

e Artificial neural networks (ANN)

* Knowledge based expert systems

* Monte Carlo (MC) methods



Dempster-Shafer evidential theory



General data fusion methods

* The Bayesian and Dempster—Shafer approaches
belong to the class of feature-based parametric
algorithms. They directly map parametric data (e.g.,
features) into a declaration of identity. Physical
models are not used.

* Artificial neural networks belong to the class of
feature-based information theoretic techniques
that transform or map parametric data into an
identity declaration. No attempt is made to directly
model the stochastic aspects of the observables.



General data fusion methods

* Fuzzy logic and knowledge-based expert systems are
examples of cognitive-based approaches that attempt
to emulate and automate the decision-making
processes used by human analysts.

* The Kalman filter and its nonlinear-motion
counterparts are examples of physical models since the
kinematics of the objects being tracked are modeled.
Physical models replicate object discriminators—in this
case, position, velocity, and sometimes acceleration—
that are easily observable or calculable.



* Input: sensor data from multiple sensors
* Process: combining data
* Goal: to get better and/or more reliable data



Revised JDL data fusion model (1998)
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A three-level fusion paradigm

* Signal level fusion, where data correlation takes
place through learning due to the lack of a
mathematical model describing the phenomenon
being measured.

* Evidence level fusion, where data is combined at
different levels of inference based on a statistical
model and the assessment required by the user
(e.g. decision making or hypothesis testing).

* Dynamics level fusion, where the fusion of data is
done with the aid of an existing mathematical
model.



Data
Fusion

A three-level fusion paradigm

Signal
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Data fusion techniques

* Data association (Raw data level)
* Kalman Filtering
* Figure of Merit
* Gating

 State estimation (Feature data level)
* Bayesian Theory
* Dempster-Shafer
* Neural Networks
* Clustering Algorithms
 Template Methods

* Decision fusion level
* Fuzzy Logic
* Genetics Algorithms
* Expert Systems
* Blackboard Systems



A number of things need to be considered when defining
the type of fusion algorithm used and level at which
fusion will occur. These include:

e How are the sensors distributed?

 What are the format, type and accuracy of the
collected data?

e What is the nature of the sensors used?
e What is the resolution of the sensors used?
 What is the computational capability at the sensors?



Joint Directors of Laboratories (JDL)

* Level 1, object refinement
* Level 2, situation assessment
* Level 3, threat/impact assessment

e Level 4, Process Refinement



Joint Directors of Laboratories (JDL)

Object refinement Data Fusion Centre
Data alignment

SOURCES
Sensors
Databases
Knowledge

Data association Threat assessment
Object estimation Situation assessment Trade-offs in
Object identity Objects —> Events decision making

| PROCESS REFINEMENT ?

USER
INTERFACE

V
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Three Processing Architectures:
a) Direct fusion of sensor data
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b) Representation of sensor data via feature vectors
and subsequent fusion of the feature vectors

Sensor

ZO——=HOPrAO-HXmMm MmMAUC—HZXMT

Z0——>—-0000>r

Feature
Level
Fusion

|dentity
Declaration

Joint
——> |dentity
Declaration
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c) Processing of each sensor to achieve high-level
inferences or decisions that are subsequently combined
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Functional model for a data fusion process
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A three-level fusion paradigm

* Signal level fusion, where data correlation takes
place through learning due to the lack of a
mathematical model describing the phenomenon
being measured.

* Evidence level fusion, where data is combined at
different levels of inference based on a statistical
model and the assessment required by the user
(e.g. decision making or hypothesis testing).

* Dynamics level fusion, where the fusion of data is
done with the aid of an existing mathematical
model.



Data
Fusion

A three-level fusion paradigm
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Centralized sighal detection system
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Distributed (decentralized) signal
detection system
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Parallel multi-sensor suite

- Sensor 1 S —

—— Sensor 2 —

L Sensor j o




Serial multi-sensor suite

— Sensor 1

Sensor 2

Sensor |




Waterfall model
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The End

Thank you for your Attention!

Dr. Seyyed Abed Hosseini
E-mail: abed_hosseyni@yahoo.com
Cell phone: +98-915-359-5578
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