

The Basic physics of Diffusion-weighted Imaging (DWI) and Diffusion Tensor Imaging (DTI)

Mahdi Mohammadi

PhD Candidate of Medical Physics Department of Medical Physics and Biomedical Engineering, TUMS NBML Neuroimaging Working Group RCMCI, Neuroimaging Analysis Group (NIAG)

mdi.mohammadi@yahoo.com

Introduction

- Magnetic resonance images may provide excellent contrast because of variations in:
- water proton density,
- relaxation times (which reflect macromolecular content),
- > molecular Brownian motion (diffusion imaging),
- > flow,
- the effects of contrast agents (CAs),
- chemical composition (e.g., concentration of amides or lipids, or metabolites)
- and even mechanical properties such as elastic constants and strain rates.

Mahdi Mohammadi / PhD Candidate of Medical Physics

Introduction

Magnetic resonance imaging connotes a class of images that can portray a range of types of information available using the same instrumentation.

Mahdi Mohammadi / PhD Candidate of Medical Physics

(A) T1 weighted, (B) T2 weighted, (C) a map of quantitative magnetization transfer pool ratio, (D) blood perfusion,
(E) a blood oxygen level dependent (BOLD) map of activation, (F) a venogram, (G) diffusion weighted, (H) a diffusion tensor image (DTI) of white matter tracts and (I) multivoxel high-resolution MR spectra.

5

Mahdi Mohammadi / PhD Candidate of Medical Physics

Mahdi Mohammadi / PhD Candidate of Medical Physics

What is diffusion?

- Diffusion = Brownian motion
- Random movement of water and small molecules due to thermal collision
- Characterized by diffusion coefficient, D
- D reflects the flux of particles through a surface during a certain period of time, it therefore has units of area/time (e.g. mm²/sec).

Mahdi Mohammadi / PhD Candidate of Medical Physics

- Diffusion of water molecules is hindered in the intracellular compartment due to:
- the presence of macromolecules
- increased viscosity
- multiple membranes

Mahdi Mohammadi / PhD Candidate of Medical Physics

10

Isotropic vs Anisotropic Diffusion

Mahdi Mohammadi / PhD Candidate of Medical Physics

Isotropic vs Anisotropic Diffusion

Isotropic material

- Diffusion is same in every direction
- Characterized by single diffusion coefficient (D)

Anisotropic material

- Diffusion varies with direction
- Characterized by diffusion tensor, a 3×3 matrix

Mahdi Mohammadi / PhD Candidate of Medical Physics

Diffusion Tensor

D $\mathcal{D}_{isotropic}$

Mahdi Mohammadi / PhD Candidate of Medical Physics

Isotropic vs Anisotropic Diffusion

 $\mathbf{D} = \mathbf{D}_{\text{mean}} = 1 \, \left[\mathbf{mm^2/s} \right]$

???

DWI vs DTI

DWI measures the net displacement of water

DTI measures the degree and direction of diffusion

Mahdi Mohammadi / PhD Candidate of Medical Physics

DWI or DW-MRI Mechanism

DWI pulse sequence

Time

Mahdi Mohammadi / PhD Candidate of Medical Physics

DWI or DW-MRI Mechanism

Mahdi Mohammadi / PhD Candidate of Medical Physics

DWI or DW-MRI Mechanism

Mahdi Mohammadi / PhD Candidate of Medical Physics

18

The Stejskal-Tanner Sequence for DWI

b-value (sensitivity) Diffusion time $b = \gamma^2 G^2 \delta^2 T_D [s/mm^2]$ $T_D = \Delta - \delta/3$

Mahdi Mohammadi / PhD Candidate of Medical Physics

DWI Signal Equation

 $S = S_0 \cdot e^{-TE/T^2} \cdot e^{-b \cdot D}$

Mahdi Mohammadi / PhD Candidate of Medical Physics

T2-effects in DWI (T2 shine-through)

$$S = S_0 \cdot e^{-TE/T^2} \cdot e^{-b \cdot D}$$

- DW images are both T2- and Diffusion-weighted
- Long T2 lesions can increase DWI signal mimicking restricted diffusion
- Clarified by reviewing ADC images (Apparent Diffusion Constant images)

$$ADC = \frac{-\ln(\frac{s}{s_0})}{b} \quad [mm^2/s]$$

$$S = S_0 e^{-b .ADC}$$

Mahdi Mohammadi / PhD Candidate of Medical Physics

T2-effects in DWI (T2 shine-through)

T2-weighted SE image

Trace DW image

ADC Map

Rounded left parietal lesion (a glioma) shows moderate brightness on Trace DW image. This is not due to restricted diffusion, however, as the lesion is also bright on the ADC map (implying increased diffusivity). The T2-weighted SE image confirms the brightness on the Trace image is a T2 "shine-through" effect.

Mahdi Mohammadi / PhD Candidate of Medical Physics

DWI vs ADC-map

b = 0 (T2-W)

b = 1000 (DWI)

b = 1000 (ADC)

Mahdi Mohammadi / PhD Candidate of Medical Physics

23

Directional Dependent Diffusion

Mahdi Mohammadi / PhD Candidate of Medical Physics

Selection of Optimal b-value

- The "optimal" choice of b-value is not clearly defined and depends upon:
- Field strength

25

- Number of signals averaged
- > Anatomical features
- Predicted pathology
- The brains of neonates and young infants have much higher water content than adults with T2- and ADC-values 25-40% longer.
- In these patients the b-value is often made shorter, in the range of 600-700 s/mm².

A useful rule of thumb is to pick the *b*-value so that $(b \times ADC) \approx 1$.

Mahdi Mohammadi / PhD Candidate of Medical Physics

Brain DWI images using 3 different *b*-values (0, 1000, and 3000 s/mm²)

Mahdi Mohammadi / PhD Candidate of Medical Physics

27

Diffusion Tensor Imaging (DTI)

Mahdi Mohammadi / PhD Candidate of Medical Physics

29

Diffusion Tensor Imaging (DTI)

Mahdi Mohammadi / PhD Candidate of Medical Physics

30

Isotropic vs Anisotropic Diffusion

Isotropic diffusion

 $ADC_{yy} = 1 \text{ [mm^2/s]}$ $ADC_{zz} = 1 \text{ [mm^2/s]}$

 $ADC_{mean} = 1 [mm^2/s]$

???

DWI vs DTI

DWI measures the net displacement of water

DTI measures the degree and direction of diffusion

Mahdi Mohammadi / PhD Candidate of Medical Physics

DTI comprises a group of techniques where calculated *eigenvalues* (λ₁, λ₂, and λ₃) and *eigenvectors* (ε₁, ε₂, and ε₃) are used to create images reflecting various diffusion properties of a tissue.

Mahdi Mohammadi / PhD Candidate of Medical Physics

Mahdi Mohammadi PhD Candidate of Medical Physics Department of Medical Physics and Biomedical Engineering, TUMS NBML Neuroimaging Working Group RCMCI, Neuroimaging Analysis Group (NIAG) mdi.mohammadi@yahoo.com

х

- Regular" diffusion-weighted (DW) imaging produces images based on only the sum or average of the eigenvalues.
- The sum of the eigenvalues $(\lambda_1 + \lambda_2 + \lambda_3)$ is called the trace, while their average (= trace/3) is called the mean diffusivity (MD) or apparent diffusion coefficient (ADC).

Mahdi Mohammadi / PhD Candidate of Medical Physics

Mahdi Mohammadi / PhD Candidate of Medical Physics

Diffusivity Measures

Trace

- Reflects the overall water content.
- Is a commonly used clinical measure, which gives an indication of the overall diffusivity in a given voxel.
- Is completely rotationally independent, and therefore unlike with ADC, changes in Tr(D) can be attributed solely to changes in tissue structure.
- An important metric in the assessment and diagnosis of stroke.

$$Tr(D) = \lambda_1 + \lambda_2 + \lambda_3 = D_{xx} + D_{yy} + D_{zz}$$

Mahdi Mohammadi / PhD Candidate of Medical Physics

Diffusivity Measures

Mean Diffusivity (MD or D)

- Characterizes the overall mean squared displacement of molecules (average ellipsoid size).
- > Is simply a scaled version of the trace Tr(D).
- Is a measure of the overall diffusivity in a particular voxel regardless of direction.
- Can be used to delineate the area affected by stroke.

$$\mathbf{D} = \frac{\mathrm{Tr}(\mathbf{D})}{3} = \frac{\lambda_1 + \lambda_2 + \lambda_3}{3} = \frac{\mathbf{D}_{xx} + \mathbf{D}_{yy} + \mathbf{D}_{zz}}{3}$$

Mahdi Mohammadi / PhD Candidate of Medical Physics

Diffusivity Measures

Axial Diffusivity (AD)

- > Axial (or longitudinal or parallel) diffusivity, λ_{\parallel}
- > Is simply the diffusivity along the principal axis of the diffusion ellipsoid and is given by λ_1

Radial Diffusivity (RD)

- \succ Radial (or transverse or perpendicular) diffusivity, λ_{\perp}
- Is a measure used to express the diffusivity perpendicular to the principal direction of diffusion

$$\lambda_{\perp} = \frac{\lambda_2 + \lambda_3}{2}$$

Mahdi Mohammadi / PhD Candidate of Medical Physics

Mahdi Mohammadi / PhD Candidate of Medical Physics

The Measurements

 $(DW_{xx}, DW_{xy}, DW_{xz}, DW_{yy}, DW_{yz}, DW_{yy}, DW_{yz}, DW_{zz})$

Mahdi Mohammadi / PhD Candidate of Medical Physics

Calculations (I)

 $(ADC_{xx}, ADC_{xy}, ADC_{xz}, ADC_{yy}, ADC_{yz}, ADC_{yy}, ADC_{yz}, ADC_{yy})$

Mahdi Mohammadi / PhD Candidate of Medical Physics

41

Calculations (II): the Diffusion Tensor

Mahdi Mohammadi / PhD Candidate of Medical Physics

Three diffusion tensor imaging techniques in common use are

- the fractional anisotropy map (FA-map)
- the principal diffusion direction map
- fiber-tracking maps (Tractography)

Mahdi Mohammadi / PhD Candidate of Medical Physics

Fractional Anisotropy Map (FA-map)

Fractional anisotropy (FA) is an index for the amount of diffusion asymmetry within a voxel, defined in terms of its eigenvalues:

$$FA = \sqrt{\frac{(\lambda_1 - \lambda_2)^2 + (\lambda_2 - \lambda_3)^2 + (\lambda_1 - \lambda_3)^2}{2(\lambda_1^2 + \lambda_2^2 + \lambda_3^2)}}$$

The value of FA varies between 0 and 1.

43

- For perfect isotropic diffusion, $\lambda_1 = \lambda_2 = \lambda_3$, the diffusion ellipsoid is a sphere, and FA = 0.
- □ With progressive diffusion anisotropy, the eigenvalues become more unequal, the ellipsoid becomes more elongated, and the FA \rightarrow 1.

Mahdi Mohammadi / PhD Candidate of Medical Physics

Fractional Anisotropy Map (FA-map)

The FA-map is a gray-scale display of FA values across the image. Brighter areas are more anisotropic than darker areas.

Mahdi Mohammadi / PhD Candidate of Medical Physics

Principal Diffusion Direction Map

- This is a map that assigns colors to voxels based on a combination of anisotropy and direction.
- It is also called the colored fractional anisotropy map, fiber direction map or diffusion texture map.
- The color assignment is arbitrary, but the typical convention is to:
- > the orientation of the principal eigenvector (ε_1) control hue
- fractional anisotropy (FA) control brightness

45

Mahdi Mohammadi / PhD Candidate of Medical Physics

46

Principal Diffusion Direction Map

Mahdi Mohammadi / PhD Candidate of Medical Physics

47 Fiber-Tracking Maps (Tractography)

- Axonal tracts are commonly mapped using a deterministic method known as FACT (fiber assignment by continuous tracking).
- In this method the user selects "seed voxels" in a certain area of the brain and automated software computes fiber trajectories in and out of that area.
- This is accomplished by following the primary eigenvector (ε₁) in each voxel until it encounters a neighboring voxel, at which time the trajectory is changed to point in the direction of the new eigenvector.

Mahdi Mohammadi / PhD Candidate of Medical Physics

✓ Voxels are connected based upon similarities in the maximum diffusion direction.

Mahdi Mohammadi / PhD Candidate of Medical Physics

Mahdi Mohammadi / PhD Candidate of Medical Physics

Mahdi Mohammadi / PhD Candidate of Medical Physics

CORPUS CALLOSUM

CINGULATE

WHOLE BRAIN

IFOF

ARCUATE

ILF

Mahdi Mohammadi PhD Candidate of Medical Physics Department of Medical Physics and Biomedical Engineering, TUMS NBML Neuroimaging Working Group RCMCI, Neuroimaging Analysis Group (NIAG) mdi.mohammadi@yahoo.com

UNCINATE

DWI and DTI Applications

Mahdi Mohammadi / PhD Candidate of Medical Physics

Restricted Diffusion

Restricted Diffusion = Bright DWI = Low ADC

Most important:

- Infarction
- Abscess
- Lymphoma
- Intra-myelinic edema

Mahdi Mohammadi / PhD Candidate of Medical Physics

54

Intracranial diseases with restricted diffusion (bright on DW images)

Category	Examples		
Vascular	Infarction (venous or arterial), diffuse hypoxic injury, posterior reversible encephalopathy (PRES)		
Neoplastic	Lymphoma, epidermoid, xanthogranuloma of choroid plexus, medulloblastoma, malignant glioma, malignant meningioma, primitive neuroectodermal tumor (PNET), atypical teratoid-rhabdoid tumor, metastases		
Infectious	Abscess, empyema, meningoencephalitis (herpes), Creutzfelt-Jakob disease		
Traumatic	Hematoma, diffuse axonal injury (DAI), Wallerian degeneration, status epilepticus, contusion		
Toxic/Metabolic	Carbon monoxide (CO), drugs (heroin, vigabatrin, carbamazepine, methotrexate), hypoglycemia, hyperglycemia, Wernicke's, congenital biochemical disorders (phenylketonuria, glutaric aciduria, urea cycle defects, maple syrup urine disease, Canavan's, many others)		
Demyelinating	Acute disseminated encephalomyelitis (ADEM), osmotic demyelination, multiple sclerosis, delayed post-anoxic encephalopathy, Marchiava-Bignami		

Mahdi Mohammadi / PhD Candidate of Medical Physics

Clinical Cases (Diffusion)

Diffusion in Stroke: Early phase

Progressive cytotoxic edema magnetic diffusion decrease

Mahdi Mohammadi / PhD Candidate of Medical Physics

Acute Ischemia

T2 – Weighted

Diffusion-Weighted

Mahdi Mohammadi / PhD Candidate of Medical Physics

Clinical Cases (Diffusion)

Diffusion in Stroke: Late phase

Mahdi Mohammadi / PhD Candidate of Medical Physics

DWI

ADC

13 hours

6 days

3 months

Mahdi Mohammadi / PhD Candidate of Medical Physics

Table 5.1 Time course of thromboembolic infarction of the middle cerebral artery

	< 6 hours	3 days	7 days	30 days
T2	lsointense	Bright	Bright	Bright
DW imaging	Bright	Very bright	Bright	lsointense
ADC	Dark	Very dark	Dark	Bright

Mahdi Mohammadi / PhD Candidate of Medical Physics

Clinical Cases (Diffusion)

Glioblastoma in left thalamus

(a) CE T1-weighted image, (b) ADC map shows restricted diffusion, (C) FA

Mahdi Mohammadi / PhD Candidate of Medical Physics

Tract Integrity

Mahdi Mohammadi / PhD Candidate of Medical Physics

Suggested References

Toshio Moritani Sven Ekholm Per-Lennart Westesson

Diffusion-Weighted MR Imaging of the Brain

econd Edition

Deringer

Diffusion Tensor Imaging

A Practical Handbook

Wim Van Hecke Louise Emsell Stefan Sunaert *Editors*

🖄 Springer

3-D dataset on CD

🖄 Springer

Mahdi Mohammadi / PhD Candidate of Medical Physics

THANKS FOR YOUR ATTENTION